The parametric g-formula
IN SAS

JESSICA G. YOUNG
CIMPOD 2017/
CASE STUDY 1




Structure of the workshop

Part |: Motivation

»Why we might use the parametric g-formula and
how it works in general

Part Il: GFORMULA SAS macro
» Structure of the macro
»Sample code



GFORMULA macro

Contributors: Miguel Hernan, Sarah Taubman, Roger Logan, Jessica
Young, Sara Lodi, Sally Picciotto, Goodarz Danaei

Version on web: 2.0

Version for today: 3.0



Contact info

Updates to macro and documentation:

https://www.hsph.harvard.edu/causal/software/

My email:

jessica.gerald.young@gmail.com




PART |: MOTIVATION



Case study

Lajous et al. Changes in fish consumption in Midlife and the
Risk of Coronary Heart Disease in Men and Women.
American Journal of Epidemiology (2013).

Interested in estimating the causal effect of different time-

varying (sustained) fish consumption interventions on 18
year risk of coronary heart disease (CHD) in a study
population.



Causal effect

Population causal effects can be formally defined in terms
of contrasts in counterfactual outcome distributions
associated with different intervention rules:

»What would happen to the population 18 year risk of
CHD if, possibly contrary to fact, we intervened on fish
consumption at each time over the 18 year follow-up

period in one way versus another?



Lajous et al:

Causal 18 year risk ratio/difference comparing :

1. Always eat at least 3 servings of fish per week versus
2. “Natural Course”: no intervention on fish




|[deal RCT

If we could, we would estimate such an effectin an ideal
randomized controlled trial:

» Baseline randomization: subjects randomized to one of two
treatment arms (at least 3 servings or do nothing)

» Full compliance with protocol until CHD event or 18 years later
(whichever comes first)

» Eliminate “censoring events” (e.g. study drop out, incomplete
follow-up)




|[deal RCT
» No confounding (by design)

> No selection bias (by design)

» Unbiased estimate of risk difference: difference in
proportions of CHD in each arm




Challenge to causal inference

Ideal RCTs are often not feasible

**Too costly
“**Not timely
***Unethical

Alternative: Observational studies



Observational data

No RCT had been conducted to answer the question of Lajous et al.

They used observational data to try and estimate their causal effect
of interest:

»Health Professionals Follow-up Study
> Nurses’ Health Study



Nurses’ Health Study

» Prospective cohort study, enrolled 121,701 US female registered
nurses aged 30-55 yearsin 1976.

» Participants reported via questionnaire information on health
behaviors and newly diagnosed diseases every two years.

»Lajous et al. defined “baseline” as 1990 questionnaire
» Eligibility for inclusion: free of CVD, diabetes or cancer prior to 1986
»Sample of N=53,772 women at baseline

»Censored subjects at first time failed to return questionnaire



Confounding and assumptions

»>1n Nurses’ Hea

th Study there is confounding (no exposure

randomization at any time, no “forcing”)

» People who eat more fish at a given time may have past
characteristics that make them more or less at risk for CHD

»Some subjects are also censored by incomplete follow-up
(failure to return questionnaire)

»Some subjects also die of non-CHD causes...



Confounding and assumptions

If we are willing to assume “no unmeasured confounding or
selection bias” (NUCS) we can get an unbiased estimate

»NUCS: Measured variables are sufficient to control
confounding and selection by unmeasured risk factors

»NUCS is an untestable assumption — cannot test with study
variables



No unmeasured confounding

Key features of NUCS:

1. Allows presence of measured time-varying confounders
(in addition to baseline confounding)

»E.g. BMI measured in questionnaire interval k predicts future
CHD and future fish intake.

2. Also allows that measured time-varying confounders are
themselves affected by past exposure
»E.g. BMI at k affected by Fish at k-1




CAUSAL DAG REPRESENTING NO UNMEASURED CONFOUNDING

Unmeasured
genetic factor

BMI time k-1 Fish k-1 BMI time k Fish k CHD k+1

Measured
past

Absence of arrows from unmeasured risk factor into exposure guarantees no
“unblocked backdoor paths” between exposure and outcome given measured past at
any time.

Backdoor paths = confounded paths; Directed paths = causal paths



BMI MEASURED TIME-VARYING CONFOUNDER AFFECTED BY
EXPOSURE

Unmeasured
genetic factor

BMI time k-1 Fish k-1 =— BMlI timek Fish k CHD 18 years

Measured
past

ALLOWS THAT MEASURED TIME-VARYING CONFOUNDER AFFECTED BY PAST EXPOSURE
(“NO UNMEASURED CONFOUNDING” ALLOWS THIS STRUCTURE)



Time-varying confounding and standard
regression

Turns out that even though, under this data structure, we
can get an unbiased estimate,

»We cannot get it via standard regression approaches

»We need other approaches
»Why?



Standard outcome regression

Lajous et al.: might think to fit regression model for CHD
hazard at a given time with independent variables:

» Function of time-varying exposure — cumulative average
fish consumption through prior time k

»Function of baseline and time-varying confounders --
cumulative average of BMI through k

Use coefficient on cumulative average fish consumption as
estimate of time-varying causal exposure effect



Standard outcome regression

Problem: even given “no unmeasured confounding” and
outcome regression model correctly specified

» Coefficient is a biased estimate under our DAG




BMI MEASURED TIME-VARYING CONFOUNDER AFFECTED BY
EXPOSURE

Unmeasured
genetic factor

BMI time k-1 Fish k-1 ————| BMI time k Fish k CHD k+1

Measured
past

INCLUDING FUNCTION OF BMI AT k IN REGRESSION MODEL IS CONDITIONINGON IT

CONDITIONING ON COLLIDER OPENSUP NONCAUSAL PATH BETWEEN ITS CAUSES



Estimation in observational data with
time-varying confounding

If not, standard regression, then how to proceed?

In this setting, methods that derive from Robins” g-formula
can remain valid:

»They give unbiased estimates of time-varying causal
exposure effects in the face of measured time-varying
confounding affected by past exposure.



The g-formula

Robins (1986) showed that, given NUCS

»The counterfactual outcome mean/risk associated with a
user-specified time-varying exposure intervention g can be
written as the g-formula indexed by intervention g

»The g-formula indexed by g is a particular function of the
baseline and time-varying data

» Estimated contrasts in this function for different choices
of g can give unbiased estimates of causal effects

»Also requires “positivity” assumption




G-formula for Risk by end of follow-up
under intervention g

Can write as weighted average of conditional risks

»Each risk conditioned on a possible treatment and
confounder history observable under g and no censoring

» Weights are function of joint distribution of measured
confounders at each time k conditional on past history
observable under g and no censoring

»~i.e.the “chance” of observing each confounder history (under
g) and no censoring



G-formula for Risk by end of follow-up

under intervention g

Weights can also be a function of the observed distribution
exposure at each time conditional on past history

observable under g and no censoring

»This will be the case when g is definec
intervention that depends on this distri

in terms of
oution

»E.g. intervention is: “assign fish accorc
from observed distribution of fish in Nu

ing to random draw
rses’ Health Study”



How to estimate this function

In typical high-dimensional settings, we require parametric models
to estimate the g-formula.

Different methods rely on different types of model assumptions

»Parametric g-formula: imposes models directly on components of
weighted average

»Other methods derive from alternative representations of this
weighted average which suggest constraining different quantities
(e.g. IPW of MSMs, DR methods like TMLE)

»Equivalent under saturated models



Parametric g-formula Algorithm (Step 1)

First fits parametric models for

» Discrete hazard at each time conditional on past
measured treatment and confounders

> Joint distribution of treatment and confounders at
each time given past

»Models are generally pooled over time



Modelling joint distribution of covariates
at k

Model based on arbitrary factorization of covariates at k. E.g.
f(bmi,, fish, [ past through k-1) is the same as

1. f(bmi,[fish,,past through k-1)*f(fish.[past through k-1) or
2. f(fish,[bmi,past through k-1)*f(bmi,|[past through k-1)

Depending on choice of factorization, you are modelling the
components of product 1 or product 2

»In absence of model misspecification, equivalent.

»Deterministic relationships may favor one factorization



Algorithm: Step 2

II:I times (default sample size) do the following iteratively for each

»Simulate exposure and confounders at each time k using
estimated model parameters from Step 1. Exception: at k=0
(baseline) assign values as observed values in data set.

> Reset exposure at k according to user-defined rule g

»E.g. if simulated fish<3 reset to 3; otherwise do not intervene
(threshold intervention)

» Estimate hazard of event at time k given these generated
covariate values using model in Step 1



Algorithm: Step 3

»Compute the Risk by end of follow-up for each of the N
simulated histories from the N time-varying history-specific
hazards.

» Average these Risks to get final estimate of Risk by end of
follow-up under g




Final estimates and Cls

Repeat Steps 2 and 3 for each hypothetical
Intervention.

Obtain causal effect estimates from by risk
differences/ratios for different g.

95% Cls obtained by repeating whole algorithm in B
bootstrap samples.




History 1 under g

I

Hazard,(History 1)...

Hazardg(History 1)

ﬂ

Risk by time 9
under (History 1)

Fit models — save estimated model parameters

History 2 under g

Hazard;(History 2)...

Hazardg(History 2)

I

Risk by time 9
under (History 2)

Average history-specific Risks to get
population Risk under g by end of

follow-up

History N under g

Hazard;(History N)...
Hazardg(History N)

ﬂ

Risk by time 9
under (History N)



Disadvantages of parametric g-formula

» Relies heavily on parametric models and subject to
related bias

»Some model misspecification can be theoretically
guaranteed when null of no treatment effect is true
»“null paradox” (Robins and Wasserman, 1997)



Advantages of parametric g-formula

»More stable than other methods for continuous exposures
and given “near positivity violations”

»Occurs when an intervention level of exposureis unlikely for
certain observed confounder histories

»Parametric g-formula handles by heavier reliance on extrapolation

»Generally, the complexity of algorithm is the same for any
choice of g
»\Very little change for complex dynamic rules



PART II: GFORMULA SAS macro



Different types of outcomes

Macro supports 3 types of outcomes (outctype)

1. Continuous outcome at end of follow-up time

» Choose when interest is in t-v exposure effect on
outcome mean at end of follow-up

» E.g. mean blood pressure at 5 years post-baseline
» outctype =conteofu



Different types of outcomes

Macro supports 3 types of outcomes (outctype)

2. Binary outcome at end of follow-up time

» Choose when interest is in t-v exposure effect on
probability that outcome occurs at end of follow-up

» E.g. Probability of obesity at 5 years post-baseline
» outctype =bineofu



Different types of outcomes

Macro supports 3 types of outcomes (outctype)

3. Time-varying indicator of failure event

» Choose when interest s in t-v exposure effect on risk
by end of follow-up

» E.g. Risk of CHD by 18 years post-baseline
> outctype =binsurv



Required structure for input data set

Requires a person-time data set with one record per subject
and measurement time index

»Time index (time) must start at O (baseline) for each
subject and increment by 1 for each subsequent time index.

»Time index represent a time interval in which covariates
are measured

»Lajous et al.: each time index represents a two-year
guestionnaire interval



Required structure for input data set

Each person-time record will include

»Time-fixed baseline covariates (e.g. age at baseline, race)

»Current covariate measurements for that time k (bmi, fish
measured 1n interval k)

»Time-varying indicator of censoring (e.g. failure to return
interval k questionnaire)



Required structure for input data set

-or outctype=binsurv (Lajous et al.):

»Will contain a time varying indicator of failure from event
of interest for each time index k




Required structure for input data set

-or outctype=binsurv (Lajous et al.):

»Time varying indicator of failure on line k can be coded 0, 1
or missing
»Should be 0 if neither event nor censoring has occurred
»Should be 1 if event has occurred
»Should be missing if no event but censoring occurs

»First line k where outcomeis 1 or missing is last line for
that subject.



R

equired structure for input data set

Su
fol

ojects who do not fail and are not censored by end of
ow-up will be 0 at all times for censoring and event

indicators (outctype=binsurv)

»Macro parameter timepoints encodes end of follow-up in

te

rms of intervals

»Lajous et al.: timepoints=9 (9*2 year intervals=18 years)
»Because time index time starts at 0, can take maximum

Vd

lue of 8



SAMPLE DATA



FEATURES OF BASIC CALL



libname jess '/sasdata/CIMPOD_2017/Jessica_Young'; ¢==== Define permanent libraries

%include '/home/jessica.gerald.young/gformula.sas'; <= |nclude the file with the macro

optionsnotes;  «=mmm Set options for printingin log file
*options mprint;

data fishdata;
set jess.fish;
run;

== (3|l permanent data set

Define interventions

!

%let intervl =intno=1, intlabel='atleast 2 servings of fish at all times/,
nintvar=1,intvarl=fish, inttypel=2,intmin1=2, intprl=1, inttimesl= 012345678

]

%let interv2 =intno=2, intlabel='atleast 3 servings of fish at all times/,
nintvar=1,intvarl=fish, inttypel=2, intmin1=3, intprl=1, inttimesl= 012345678



Call to GFORMULA macro

%gformulal(
data=fishdata, ===  |nput data set
id=id, ==  Sybject identifier from input data set

time=time, @===  Time index frominput data set

timeptype = conbin, == Specifies function of time for pooled over time models
timepoints=9, < End of follow-up (max value of time should be timepoints-1)
outctype=binsurv, ===  Specifies outcome is t-v binary failure indicator
outc=death, @amm  Time-varying failureindicator for event of interest

censlost=censor, ¢ Time-varying censoring indicator
numint= 2, L Number of interventions to be simulated (minus natural course)

fixedcov=race 1race 2, <¢===  Time fixed baseline confounders

ncov=2, ¢ Number of time-varying covariates (including exposure), up to 30
covl=cig, ===  Time varying covariate 1

covlotype=3, covlptype =laglbin, ===  |odel specifications for t-v covariate 1
cov2=fish, ===  Time varying covariate 2

cov2otype=3, cov2ptype=laglbin, ===  Model specifications for t-v covariate 2

nsamples= 0); ===  Number of bootstrap samples



Graphical comparisons of natural course
versus observed

»Set macro parameter rungraphs=1

»Compares “observed risk” (nonparametric estimates in
censored data) versus parametric g-formula natural course
estimates

»Comparison of observed covariate means versus simulated
under natural course.

»Used to get a sense of presence of gross model
misspecification



REVIEW OF OUTPUT




covXotypes

For each covX, X=1,...,ncov:

»The macro parameter covXotype selects the SAS regression
fitting procedure for the conditional distribution of covX.

> Also determines how covX is simulated at each time k.

»Options available for covXotype are summarized in Table 1
of the documentation.



Examples of covXotype

»covXotype=1, estimates the conditional density of covX via PROC
LOGISTIC. Simulation based on estimated model parameters.

» Might be appropriate for binary variables that can take value 1 or O at
any time with no restriction.

»covXotype=2, estimates via PROC LOGISTIC amongst records with

lagged value of covX=0. Simulates from the model if last simulated
value of covXwas 0. If last value was 1, sets covXto 1.

» Might be appropriate for binary variables that once they switch to 1,
they stay 1 (e.g. diagnosis of diabetes by time k)



Examples of covXotype

»covXotype=3, estimate of conditional density of covX obtained via
PROC REG. Simulation based on estimated model parameters under
normality assumption.

» Might be appropriate for continuous variables.

»covXotype=4, estimates conditional density of covX via two steps:
»PROC LOGISTIC for whether covX>0 or not

» PROC REG for records with covX>0
»Simulation is in two steps

» Might be appropriate for continuous variables with zero-heavy tails
(e.g. number of cigarettes per day)



Exercise 1
Edit fishcalll.sas

1. Change the otype for time-varying covariate cig to
covlotype=4

2. Add additional baseline confounders: pre-baseline
number of cigarettes (cigprebl), pre-baseline high
blood pressure? (hbpprebl), pre-bl meat

consumption (mtprebl), pre-bl fish consumption
(fishprebl)



covXptypes

Determines how the “history” of covX will appear in each
model

»Hazard model
»Models for covariate distributions
» Details in Table 2




covXptypes (lagl- prefix)
Prefix lag1- (laglbin, laglqgdc,laglzqdc,laglcat,laglspl)

»Includes function of one lagged value of covX in covariate
models

»Includes function of current value of covX only in hazard
models

»Function depends on choice of suffix

» Need to include lagged value of covX in input data set
»Must be named covX |1 (e.g. cig |1 if covX=cig)



covXptypes (suffix options)

Suffix options that determine function:

»laglbin: identity function (linear assumption when covX is not
binary)

»laglqgdc: quadratic function

»laglcat: categorization of variable (must also specify covXknots
which give cutoffs for categories)

»E.g. covl=cig, covlptype=laglcat,covlknots=5 10 15,...

»laglspl: restricted cubic spline (must also specify covXknots)



covXptypes (lag2- prefix)

Prefix lag2- (lag2bin, lag2qdc,lag2zqdc,lag2cat,lag2spl)

»Includes function of two recent lagged values of covXin
covariate models

»Includes function of current value of covX and covX_I1onlyin
hazard models

»Function depends on choice of suffix

» Need to include two lagged values of covXin input data set
»Must be named covX_[1and covX_ 12



Other covXptypes

cumavg Cumulative Creates and includes the cumulative average of entire history of covX
average relative to interval k beginning from time=0.

laglcuma Cumulative A variation of the cumavg ptype where the last term is pulled off of the

vg average where average. In this case there are two generated predictors. At time =k these
the last termis will be covX |1 and the average of covX from time = 0 to time = k-2.
pulled off the
average

lag2cuma Cumulative A variation of the cumavg ptype where the last two terms are pulled off of

vg average where the average. In this case there are two generated predictors. At time = k
the last two these will be covX 11, covX 12, and the average of covX from time =0 to
terms are time = k-3.
pulled off the
average

rcumavg Recent Creates and includes the cumulative average of restricted history of covX
cumulative relative to interval k based on two most recent values only.

average




Exercise 2

Edit fishcalll.sas

1. Change the ptype for time-varying covariate cig so models
include indicators for categories of first lagged value of cig
(can use cutoffs 1, 5 and 9%.

2. Add a new time-varying covariate to the call with your choice
of ptype and otype: hbp (a time-varying indicator of high-
blood pressure in each interval k)

3. Add another new time-varying covariate to the call with your
choice of ptype and otype: mt (number of servings of meat in
each interval k)




Defining interventions

»Table 3 in documentation describes different types

»Do not need to define the natural course (by default this is
run and is the default reference for causal contrasts)

»In a given intervention definition, can include up to 8
exposure variables (variables to undergo intervention)

»Interventions are defined before the call to the main
GFORMULA macro in global macro variables intervi,
iInterv?2...



Code for threshold intervention on weekly Fish intake —
eat at least 2 servings per week

%let intervl = intho=1, === Intervention number
intlabel="at least 2 servings of fish', ¢===Intervention label

nintvar= ]_’ @a=m Number of variables to undergo intervention in this intervention

intvarl=fish, <= Firstintervention variable

Inttypel=2, <= Type of intervention on first intervention variable (Table 3)

Intmin 1=2, @=== \When threshold intervention (inttypel=2), whatis the lower threshold
intpr1= 1, === Probabilityto perform this intervention on first intervention variable (default)

inttimesl= 012345678 ;  ¢mmmm |pntervention times for first
intervention var



Code for “static” intervention on weekly Fish intake —
eat exactly 2 servings per week

%let intervl = intho=1, === Intervention number
intlabel="exactly 2 servings of fish', @===Intervention label

nintvar= ]_’ @a=m Number of variables to undergo intervention in this intervention

intva r]_:ﬁsh, @ammm First intervention variable

inttype1= 1, @a=m Type of intervention on first intervention variable (Table 3)
intvalue1=2,4— When static intervention (inttypel=1), what value to assign
intpr1= 1, === Probabilityto perform this intervention on first intervention variable (default)

inttimesl= 012345678 ;  ¢mmmm |pntervention times for first
intervention var



Exercise 3
Edit fishcalll.sas

1. Add a third intervention that is a threshold intervention
on fish with cutoff at least 4 servings per day

2. Add a fourth intervention that is a joint intervention on
mt and fish where meat is “always set to exactly O
servings per day” and fish “at least 2 servings”

Hint: remember to change numint from 2 to 4 in main GFORMULA macro
call.



covXptypes (skp- prefix)

Prefix skp- (skpbin, skpgdc,skpzgdc,skpcat,skpspl)

»Can be used when covX not measured in certain intervals for
anyone and last measured value forward

»E.g.in Nurses’ Health Study, certain variables not measured in
certain questionnaire years

» Data coded such that last value carried forward in these years

» Assumption is that most recent measurement sufficient to
ensure NUCS



covXptypes (skp- prefix)
Prefix skp- (skpbin, skpgdc,skpzqgdc,skpcat,skpspl)

»Includes function of most recent value of covX and
interaction between this value and time since last measured

»Must specify length of each time interval (interval)
»E.g. interval=2 (2 year questionnaire interval)

»Specify values of time in which covX is not measured
(covXskip)

»E.g. covlskip=25



timeptype

Determines functional form of time in pooled over
time models:

»conbin, concat, congdc, conspl.
» Follows suffix functions for covXptype

» For concat and conspl, must define timeknots (the
chosen category cutoffs/knots, separated by spaces).



